Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2618, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521767

RESUMO

While phonon anharmonicity affects lattice thermal conductivity intrinsically and is difficult to be modified, controllable lattice defects routinely function only by scattering phonons extrinsically. Here, through a comprehensive study of crystal structure and lattice dynamics of Zintl-type Sr(Cu,Ag,Zn)Sb thermoelectric compounds using neutron scattering techniques and theoretical simulations, we show that the role of vacancies in suppressing lattice thermal conductivity could extend beyond defect scattering. The vacancies in Sr2ZnSb2 significantly enhance lattice anharmonicity, causing a giant softening and broadening of the entire phonon spectrum and, together with defect scattering, leading to a ~ 86% decrease in the maximum lattice thermal conductivity compared to SrCuSb. We show that this huge lattice change arises from charge density reconstruction, which undermines both interlayer and intralayer atomic bonding strength in the hierarchical structure. These microscopic insights demonstrate a promise of artificially tailoring phonon anharmonicity through lattice defect engineering to manipulate lattice thermal conductivity in the design of energy conversion materials.

2.
Phys Rev Lett ; 132(2): 026701, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277598

RESUMO

Coupling of orbital degree of freedom with a spin exchange, i.e., Kugel-Khomskii-type interaction (KK), governs a host of material properties, including colossal magnetoresistance, enhanced magnetoelectric response, and photoinduced high-temperature magnetism. In general, KK-type interactions lead to deviation in experimental observables of coupled Hamiltonian near or below the magnetic transition. Using diffraction and spectroscopy experiments, here we report anomalous changes in lattice parameters, electronic states, spin dynamics, and phonons at four times the Néel transition temperature (T_{N}) in CrVO_{4}. The temperature is significantly higher than other d-orbital compounds such as manganites and vanadates, where effects are limited to near or below T_{N}. The experimental observations are rationalized using first-principles and Green's function-based phonon and spin simulations that show unprecedentedly strong KK-type interactions via a superexchange process and an orbital-selective spin-phonon coupling coefficient at least double the magnitude previously reported for strongly coupled spin-phonon systems. Our results present an opportunity to explore the effect of KK-type interactions and spin-phonon coupling well above T_{N} and possibly bring various properties closer to application, for example, strong room-temperature magnetoelectric coupling.

3.
J Phys Condens Matter ; 33(19)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33635282

RESUMO

Deep neural networks (NNs) provide flexible frameworks for learning data representations and functions relating data to other properties and are often claimed to achieve 'super-human' performance in inferring relationships between input data and desired property. In the context of inelastic neutron scattering experiments, however, as in many other scientific scenarios, a number of issues arise: (i) scarcity of labelled experimental data, (ii) lack of uncertainty quantification on results, and (iii) lack of interpretability of the deep NNs. In this work we examine approaches to all three issues. We use simulated data to train a deep NN to distinguish between two possible magnetic exchange models of a half-doped manganite. We apply the recently developed deterministic uncertainty quantification method to provide error estimates for the classification, demonstrating in the process how important realistic representations of instrument resolution in the training data are for reliable estimates on experimental data. Finally we use class activation maps to determine which regions of the spectra are most important for the final classification result reached by the network.

4.
J Phys Condens Matter ; 33(12)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33378273

RESUMO

Direct engineering of material properties through exploitation of spin, phonon, and charge-coupled degrees of freedom is an active area of development in materials science. However, the relative contribution of the competing orders to controlling the desired behavior is challenging to decipher. In particular, the independent role of phonons, magnons, and electrons, quasiparticle coupling, and relative contributions to the phase transition free energy largely remain unexplored, especially for magnetic phase transitions. Here, we study the lattice and magnetic dynamics of biferroic yttrium orthochromite using Raman, infrared, and inelastic neutron spectroscopy techniques, supporting our experimental results with first-principles lattice dynamics and spin-wave simulations across the antiferromagnetic transition atTN∼ 138 K. Spectroscopy data and simulations together with the heat capacity (Cp) measurements, allow us to quantify individual entropic contributions from phonons (0.01 ± 0.01kBatom-1), dilational (0.03 ± 0.01kBatom-1), and magnons (0.11 ± 0.01kBatom-1) acrossTN. High-resolution phonon measurements conducted in a magnetic field show that anomalousT-dependence of phonon energies acrossTNoriginates from magnetoelastic coupling. Phonon scattering is primarily governed by the phonon-phonon coupling, with little contribution from magnon-phonon coupling, short-range spin correlations, or magnetostriction effects; a conclusion further supported by our thermal conductivity measurements conducted up to 14 T, and phenomenological modeling.

5.
Nat Commun ; 11(1): 942, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071303

RESUMO

Low thermal conductivity is favorable for preserving the temperature gradient between the two ends of a thermoelectric material, in order to ensure continuous electron current generation. In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic in PbTe and SnSe, and phonon scattering resulting from the dynamic disorder in AgCrSe2 and CuCrSe2, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in α-MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the compound's intrinsic distorted rocksalt sublattice, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in α-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.

6.
Phys Rev E ; 99(1-1): 012138, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780317

RESUMO

We have measured the dynamic structure factor of liquid neon-hydrogen mixtures (T=30.1 K) at two different H_{2} concentration levels (namely, 3.4% and 10%) making use of inelastic neutron scattering. This system has been selected since the presence of heavy Ne atoms strongly influences the self-dynamics of the H_{2} centers of mass via the formation of short-lived cages, which act both on the vibrational and the diffusive parts of the single-particle motion. After operating a standard data reduction and the subtraction of the Ne signal, experimental neutron spectra were analyzed through a generalization of the Young and Koppel model, and the H_{2} center-of-mass self-dynamic structure factor was finally extracted for the two liquid samples. Important physical quantities (namely, single-particle mean kinetic energy and self-diffusion coefficient) were estimated from the experimental data and then compared with quantum dynamical calculations, which also provided simulations of the velocity autocorrelation functions for Ne atoms and H_{2} centers of mass. The latter estimates, in the framework of the well-known Gaussian approximation, were used to simulate the H_{2} center-of-mass self-dynamic structure factor in the same kinematic range and thermodynamic conditions of the neutron scattering one. The comparison between measured and calculated spectra turned out to be qualitatively good, but some discrepancies, especially in the low-frequency part, seem to reinforce the idea of the existence of relevant non-Gaussian effects as in the case of pure hydrogen and H_{2}-D_{2} mixtures.

7.
Sci Rep ; 7(1): 13637, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057993

RESUMO

The first experimental characterization of a multiple energy analysis wide angle backend for a cold triple-axis spectrometer is reported. The multi-analyzer module MultiFLEXX employs 155 detection channels which simultaneously probe an extensive range in wavevector and energy transfer. Successful mapping of magnetic excitations in MnF2 and Ho demonstrate order of magnitude gains in data collection efficiency using this novel type backend. MultiFLEXX is competitive to standard triple-axis spectroscopy in terms of energy resolution and signal-to-noise ratio. A minority of the detector channels is affected by spurious signals inherent to this multiplexing concept. The characteristic signature of these spurious signals easily allows for their discrimination. The instrument concept focuses on detection efficiency in the horizontal scattering plane which makes it an ideal technique for fast mapping and parametric studies including extreme sample environment.

8.
Nat Commun ; 7: 13146, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759004

RESUMO

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26830792

RESUMO

The hexagonal RMnO3(h-RMnO3) are multiferroic materials, which exhibit the coexistence of a magnetic order and ferroelectricity. Their distinction is in their geometry that both results in an unusual mechanism to break inversion symmetry and also produces a two-dimensional triangular lattice of Mn spins, which is subject to geometrical magnetic frustration due to the antiferromagnetic interactions between nearest-neighbor Mn ions. This unique combination makes the h-RMnO3 a model system to test ideas of spin-lattice coupling, particularly when both the improper ferroelectricity and the Mn trimerization that appears to determine the symmetry of the magnetic structure arise from the same structure distortion. In this review we demonstrate how the use of both neutron and X-ray diffraction and inelastic neutron scattering techniques have been essential to paint this comprehensive and coherent picture of h-RMnO3.

10.
Phys Rev Lett ; 115(22): 226402, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650312

RESUMO

Barium bismuth oxide (BaBiO_{3}) is the end member of two families of high-T_{c} superconductors, i.e., BaPb_{1-x}Bi_{x}O_{3} and Ba_{1-x}K_{x}BiO_{3}. The undoped parent compound is an insulator, exhibiting a charge density wave that is strongly linked to a static breathing distortion in the oxygen sublattice of the perovskite structure. We report a comprehensive spectroscopic and x-ray diffraction study of BaBiO_{3} thin films, showing that the minimum film thickness required to stabilize the breathing distortion and charge density wave is ≈11 unit cells, and that both phenomena are suppressed in thinner films. Our results constitute the first experimental observation of charge density wave suppression in bismuthate compounds without intentionally introducing dopants.

11.
J Phys Condens Matter ; 26(43): 433202, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25299241

RESUMO

Multiferroic materials have attracted much interest due to the unusual coexistence of ferroelectric and (anti-)ferromagnetic ground states in a single compound. They offer an exciting platform for new physics and potentially novel devices. BiFeO3 is one of the most celebrated multiferroic materials and has highly desirable properties. It is the only known room-temperature multiferroic with TC ≈ 1100 K and TN ≈ 650 K, and exhibits one of the largest spontaneous electric polarisations, P ≈ 80 µC cm(-2). At the same time, it has a magnetic cycloid structure with an extremely long period of 620 Å, which arises from competition between the usual symmetric exchange interaction and the antisymmetric Dzyaloshinskii-Moriya (DM) interaction. There is also an intriguing interplay between the DM interaction and single ion anisotropy K. In this review, we have attempted to paint a complete picture of bulk BiFeO3 by summarising the structural and dynamic properties of both the spin and lattice parts and their magneto-electric coupling.

12.
Phys Rev Lett ; 113(10): 107202, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238381

RESUMO

Low-energy magnon excitations in multiferroic BiFeO3 were measured in detail as a function of temperature around several Brillouin zone centers by inelastic neutron scattering experiments on single crystals. Unique features around 1 meV are directly associated with the interplay of the Dzyaloshinskii-Moriya interaction and a small single-ion anisotropy. The temperature dependence of these and the exchange interactions were determined by fitting the measured magnon dispersion with spin-wave calculations. The spectra best fit an easy-axis type magnetic anisotropy and the deduced exchange and anisotropy parameters enable us to determine the anharmonicity of the magnetic cycloid. We then draw a direct connection between the changes in the parameters of spin Hamiltonian with temperature and the physical properties and structural deformations of BiFeO3.

13.
Phys Rev Lett ; 111(25): 257202, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24483753

RESUMO

The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as "classical" can indeed break down.

14.
J Phys Condens Matter ; 24(21): 213201, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22553096

RESUMO

The solid state exhibits a fascinating variety of phases, which can be stabilized by the variation of external parameters such as temperature, magnetic field and pressure. Until recently, numerical analysis of magnetic and/or orbital phases with collective excitations on a periodic lattice tended to be done on a case-by-case basis. Nowadays dynamical matrix diagonalization (DMD) has become an important and powerful standard method for the calculation of dispersive modes. The application of DMD to the interpretation of inelastic neutron scattering (INS) data on dispersive magnetic excitations is reviewed. A methodical survey of calculations employing spin-orbit and intermediate coupling schemes is illustrated by examples. These are taken from recent work on rare earth, actinide and transition metal compounds and demonstrate the application of the formalism developed.


Assuntos
Algoritmos , Campos Magnéticos , Modelos Químicos , Modelos Moleculares , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...